

Journal of Organometallic Chemistry 489 (1995) 63-70

The synthesis, characterizations and structures of Group 4 metal-chromium complexes bridged by an $OC_6H_4CH_3$ group

Ting-Yu Huang, Chi-Tain Chen, Han-Mou Gau *

Department of Chemistry, National Chung-Hsing University, Taichung 403, Taiwan

Received 1 June 1994; in revised form 10 August 1994

Abstract

The bimetallic complexes, $(\eta^5-C_5H_5)_2MX[(OC_6H_4CH_3)Cr(CO)_3]$ (M = Ti; X = CH₃ (1), Cl (2) or Br(3)) (M = Zr; X = CH₂C₆H₅ (5)), were prepared by reaction of $(\eta^5-C_5H_5)_2MXR$ with 1 molar equivalent of $(p-HOC_6H_4CH_3)Cr(CO)_3$. The complexes, $(\eta^5-C_5H_5)_2M[(OC_6H_4CH_3)Cr(CO)_3]_2$ (M = Ti (4) or Zr (6)), were prepared by reaction of $(\eta^5-C_5H_5)_2MR_2$ with 2 molar equivalents of $(p-HOC_6H_4CH_3)Cr(CO)_3$. These complexes were characterized by the melting point, elemental analysis, and IR, ¹H and ¹³C NMR spectroscopy. Complex 3 crystallizes in the triclinic $P\overline{1}$ space group with cell parameters a = 7.682(2) Å, b = 10.262(3) Å, c = 13.838(4) Å, $\alpha = 109.43(2)^{\circ}$, $\beta = 100.33(2)^{\circ}$, $\gamma = 100.10(2)^{\circ}$, R = 0.072 and $R_w = 0.090$. Complex 4 crystallizes in the monoclinic $P2_1/c$ space group with cell parameters a = 7.626(3) Å, b = 41.70(3) Å, c = 18.287(7) Å, $\beta = 92.01(3)^{\circ}$, R = 0.050 and $R_w = 0.062$. Two independent molecules are found in a unit cell for 4. Both 3 and 4 show unusually long Ti-O(aryl) bond distances which suggest severely steric crowdedness between titanocene and (arene)Cr(CO)₃ moieties. The conformations of Cr-carbonyl tripods are staggered relative to the oxygen donor for 3 and *syn*-eclipsed, *anti*-eclipsed and staggered for 4.

Keywords: Chromium; Titanium; Zirconium

1. Introduction

The chemistry of $(arene)Cr(CO)_3$ has attracted extensive attention during the last two decades, and studies of these complexes have appeared in several reviews [1]. The main focuses of the studies are on the effect of donor-acceptor abilities of the substituent X of $(X_n C_6 H_{6-n})Cr(CO)_3$ to the spectroscopic properties of the complexes [1a,2] and to the regioselectivities of the nucleophilic substitutions on the phenyl ring [1a,3]. Structurally, the non-planarity of the phenyl ring and the conformation of the Cr-carbonyl tripods can also be correlated with the donor-acceptor abilities of the ring substituents [4]. Recently, the ring-substituted arene chromium complexes $(XC_6H_5)Cr(CO)_3$ were used as metalloligands for the preparation of bimetallic complexes [5]. For these bimetallic complexes, it is interesting to see the effect of the second metal on the properties and on the structural variations of the $(arene)Cr(CO)_3$ moiety.

Here we report the synthesis of group 4 metal-chromium complexes bridged by an $OC_6H_4CH_3$ group which bears unequivalent *para*-disubstituted groups. The complexes prepared are $Cp_2MX[(OC_6H_4CH_3) Cr(CO)_3]$ ($Cp = \eta^5$ -cyclopentadienyl) (M = Ti; X = CH_3 (1), Cl (2), Br (3) or $(OC_6H_4CH_3)Cr(CO)_3$ (4)) (M = Zr; $X = CH_2C_6H_5$ (5) or $(OC_6H_4CH_3)Cr(CO)_3$ (6)). The molecular structures of 3 and 4 were determined through X-ray analysis. The molecular structures of 3 and 4 show rather long Ti–O bond distances which may suggest severely steric crowdedness between titanocene and (arene)Cr(CO)_3 moieties. The conformation of Cr-carbonyl tripods are random owing to the steric crowdedness.

2. Experimental section

2.1. Reagents and general techniques

The compounds $Cp_2Ti(CH_3)_2$ [6], $Cp_2Ti(CH_3)Cl$ [7], $Cp_2Ti(CH_3)Br$ [7] and $Cp_2Zr(CH_2C_6H_5)_2$ [8] were prepared according to the literature procedures.

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 \otimes 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05158-5

 $(HOC_6H_4CH_3)Cr(CO)_3$ [9] was prepared from reaction of $(CH_3CN)_3Cr(CO)_3$ [10] with *p*-HOC₆H₄CH₃ in refluxing tetrahydrofuran. *p*-HOC₆H₄CH₃ (Merck) was used without further purification. Solvents were dried by refluxing at least 24 h over P₂O₅ (dichloromethane) or sodium-benzophenone (*n*-hexane, diethyl ether, tetrahydrofuran and benzene) and were freshly distilled prior to use. Deuterated solvents (Aldrich) were dried over molecular sieves. All syntheses and manipulations were carried out under a dry dinitrogen atmosphere.

2.2. Synthesis of $Cp_2Ti(CH_3)[(OC_6H_4CH_3)Cr(CO)_3]$ (1)

To a solution of Cp₂Ti(CH₃)₂ (0.624 g, 3.0 mmol) in 30 ml of dichloromethane at -30° C, (HOC₆H₄CH₃)-Cr(CO)₃ (0.732 g, 3.0 mmol) was added slowly. The resulting mixture was stirred for 2 h and then was dried in vacuo to give a brown residue which was washed twice with 5 ml of diethyl ether each time to afford a yellowish-brown product (0.577 g (44.1%); melting point (m.p.), 159.7–160.9°C). Anal. Found: C, 57.53; H, 4.78. C₂₁H₂₀O₄TiCr Calc.: C, 57.81; H, 4.62%. IR (Nujol): ν (CO) 1946 (s), 1879 (sh), 1844 (s) cm⁻¹.

2.3. Synthesis of $Cp_2TiCl[(OC_6H_4CH_3)Cr(CO)_3]$ (2)

To a solution of Cp₂Ti(CH₃)Cl (0.703 g, 3.1 mmol) in 35 ml of dichloromethane at 0°C, (HOC₆H₄CH₃)Cr-(CO)₃ (0.752 g, 3.1 mmol) was added slowly. The resulting mixture was stirred for 2 h and was pumped to dryness to give a brown residue which was then washed three times with 5 ml of diethyl ether each time. The solid was dissolved in 30 ml of dichloromethane; the solution was filtered and then layered with 25 ml of *n*-hexane. The resulting solution was allowed to stand at -15° C to afford brownishgreen crystals (0.576 g (41.0%); m.p., 171.7–172.0°C). Anal. Found: C, 51.99; H, 3.71. C₂₀H₁₇O₄ClTiCr: Calc.: C, 52.60; H, 3.75%. IR (Nujol): ν (CO) 1947 (s), 1875 (s), 1839 (s) cm⁻¹.

2.4. Synthesis of $Cp_2TiBr[(OC_6H_4CH_3)Cr(CO)_3]$ (3)

(HOC₆H₄CH₃)Cr(CO)₃ (0.244 g, 1.0 mmol) was added slowly to a solution of Cp₂Ti(CH₃)Br (0.273 g, 1.0 mmol) in 30 ml of benzene at 5°C. The resulting mixture was stirred for 2 h and was pumped to dryness to give a brown residue which was washed twice with 5 ml of diethyl ether each time. The solid was then dissolved in 30 ml dichloromethane; the solution was filtered, concentrated to 25 ml and followed by layering on 50 ml of *n*-hexane. The solution was allowed to stand at -15° C for 72 h to give brownish-green crystals (0.281 g (56.1%); m.p., 179.3–180.3°C). Anal. Found: C, 47.51; H, 3.49. $C_{20}H_{17}O_4$ BrTiCr Calc.: C, 47.94; H, 3.42%. IR (Nujol): ν (CO) 1949 (s), 1875 (s), 1841 (s) cm⁻¹.

2.5. Synthesis of $Cp_2Ti[(OC_6H_4CH_3)Cr(CO)_3]_2$ (4)

(HOC₆H₄CH₃)Cr(CO)₃ (0.977 g, 4.0 mmol) was added slowly to a solution of Cp₂Ti(CH₃)₂ (0.416 g, 2.0 mmol) in 30 ml of dichloromethane at 5°C. The resulting mixture was allowed to warm up to room temperature and was stirred for a further 2 h. The solution was then dried in vacuo and the residue was washed twice with 15 ml of diethyl ether each time. The solid was dissolved in 40 ml of dichloromethane; the solution was filtered, concentrated to 30 ml and layered with 50 ml of *n*-hexane. The resulting solution was cooled to -15° C to afford reddish-brown crystals (0.752 g (56.6%); m.p., 180.2–181.6°C). Anal. Found: C, 53.82; H, 3.60. C₃₀H₂₄O₈TiCr₂ Calc.: C, 54.23; H, 3.64%. IR (Nujol): ν (CO) 1941 (s), 1857 (s), 1849 (sh) cm⁻¹.

2.6. Synthesis of $Cp_2Zr(CH_2C_6H_5)[(OC_6H_4CH_3)-Cr(CO)_3]$ (5)

To a solution of $Cp_2Zr(CH_2C_6H_5)_2$ (0.202 g, 0.5 mmol) in 30 ml of dichloromethane at $-10^{\circ}C$, $(HOC_6H_4CH_3)Cr(CO)_3$ (0.122 g, 0.5 mmol) was added slowly and the resulting mixture was stirred for 2 h. The solution was dried in vacuo to give a yellowish-brown residue which was washed with 5 ml of diethyl ether. The solid was dissolved in 15 ml of dichloromethane, followed by layering on 30 ml of *n*-hexane and cooled at $-15^{\circ}C$ to give yellow crystals (0.155 g (55.4%); m.p., 146.2–148.9°C). Anal. Found: C, 58.09; H, 4.27. $C_{26}H_{24}O_4ZrCr$ Calc.: C, 58.36; H, 4.35%. IR (Nujol): ν (CO) 1953 (s), 1881 (s), 1845 (s) cm⁻¹.

2.7. Synthesis of $Cp_2Zr[(OC_6H_4CH_3)Cr(CO)_3]_2$ (6)

To a solution of $Cp_2Zr(CH_2C_6H_5)_2$ (0.403 g, 1.0 mmol) in 30 ml of dichloromethane at room temperature, $(HOC_6H_4CH_3)Cr(CO)_3$ (0.488 g, 2.0 mmol) was added slowly and the mixture was stirred for 1 h. The solution was dried in vacuo and the residue was washed twice with 5 ml of diethyl ether each time. The solid was dissolved in 30 ml of dichloromethane; the solution was filtered, concentrated to 20 ml and layered with 50 ml of *n*-hexane. The solution was allowed to stand at $-15^{\circ}C$ for 48 h to afford yellow crystals (0.472 g (47.2%); m.p., 205.3–206.7°C). Anal. Found: C, 50.71; H, 3.47. $C_{30}H_{24}O_8ZrCr_2$ Calc.: C, 50.91; H, 3.42%. IR (Nujol): ν (CO) 1954 (s), 1867 (s), 1848 (sh) cm⁻¹.

2.8. Physical measurements

¹H NMR spectra were obtained with a Varian Gemini-200 (200 MHz) or a Varian VXR-300 (300 MHz) spectrometer and ¹³C NMR spectra were recorded with the Varian VXR-300 (75.43 MHz) spectrometer. The ¹H and ¹³C chemical shifts were measured relative to tetramethylsilane as the internal reference. Elemental analyses of complexes were performed using a Heraeus CHN-O-RAPID instrument. IR spectra were recorded on a Hitachi 270-30 spectrometer in the region of 4000-400 cm⁻¹; the peak positions were calibrated with the 1601.4 cm⁻¹ peak of polystyrene. Melting points were measured under a dry dinitrogen atmosphere using a Büchi 535 instrument and were not corrected.

2.9. Crystal structure determinations

A brownish-green crystal of 3 of size 0.40 mm \times 0.50 $mm \times 0.65$ mm and a reddish-brown crystal of 4 of size 0.40 mm \times 0.50 mm \times 0.50 mm were used for X-ray diffraction studies. The diffraction intensities were collected on a Siemens P4 diffractometer equipped with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). All refinements and calculations were carried out with the Siemens SHELXTL PLUS software package on a MicroVax 3100-80 computer. The positions of heavy atoms for each structure were determined by direct methods and the remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out using full-matrix least-squares techniques. All non-hydrogen atoms were refined as individual anisotropic atoms. The hydrogen atoms were considered as the riding atom on carbon atom with a C-H bond length of 0.96 Å, and the hydrogen atom temperature factors were fixed at 0.08. The hydrogen atoms were included for refinements in the final cycles. The crystallographic data of 3 and 4 are summarized in Table 1.

3. Results and discussion

3.1. Synthesis and characterizations

The bimetallic complexes $Cp_2MX[(OC_6H_4CH_3)-Cr(CO)_3]$ were synthesized by the method of dealkylation from Group 4 metallocene alkyl derivatives with $(HOC_6H_4CH_3)Cr(CO)_3$ according to Eq. (1). The monosubstituted complexes 1, 2, 3 and 5 are less stable than the disubstituted complexes 4 and 6 and tends to decompose for prolonged manipulations, especially for the 1 and 5 which bear a methyl or a benzyl group on the Group 4 metal center. On the contrary, the disubstituted titanium complex 4 is stable in air for days.

The IR spectra for 1-6 in the carbonyl region reveal one high energy band around 1950 cm⁻¹ and two bands or one band with a shoulder in the region between 1880 and 1840 cm⁻¹ [5a,b,11]. These bands $R = [\Sigma(F_{\rm o} - F_{\rm c}) / \Sigma F_{\rm o}].$

^b $R_w = [\Sigma w (F_o - F_c)^2 / \Sigma w F_o^2]^{1/2}.$

^c The goodness of fit equals $[\Sigma w (F_o - F_c)^2 / (N_{reflns} - N_{params})]^{1/2}$.

are not very different from the ν (CO) of $(HOC_6H_4CH_3)Cr(CO)_3$ of 1948, 1882 and 1801 cm⁻¹ except that the lowest energy band of **1–6** shifts to a higher energy around 1840 cm⁻¹.

The ¹H and ¹³C NMR data are listed in Tables 2 and 3. The ¹H chemical shifts of Cp rings for 1 and 5, which bear an alkyl group on the Group 4 metal center, appear relatively upfield compared with other complexes, and this phenomenon reflects much better donating abilities of alkyl groups towards Group 4 metals [12]. The overall order of donating abilities is $X = R \gg [(OC_6H_4CH_3)Cr(CO)_3] > Cl > Br [5a,b]$. The ¹³C chemical shifts of Cp rings behave similarly. For the (arene)Cr(CO)₃ moieties, the ¹H and ¹³C chemical shifts of CH₃, the ¹H chemical shifts of protons *ortho* to CH₃, and the ¹³C chemical shifts of carbonyls are not sensitive towards the change in X group on the Group 4 metal center. However, the ¹H chemical shifts of protons *ortho* to the oxygen donor in 1–6 shift upfield significantly from 5.11 ppm for (HOC₆H₄-

Table 1 Crystallographic data of **3** and **4**

	3	4
Formula	C ₂₀ H ₁₇ O ₄ BrTiCr	C ₃₀ H ₂₄ O ₈ TiCr ₂
Formula weight	501.1	664.4
Crystal system	Triclinic	Monoclinic
Space group	$P\overline{1}$	P2 ₁ /c
a (Å)	7.682(2)	7.626(3)
b (Å)	10.262(3)	41.70(3)
c (Å)	13.838(4)	18.287(7)
α (°)	109.43(2)	
β (°)	100.33(2)	92.01(3)
γ (°)	100.10(2)	
$V(\text{\AA}^3)$	979.0(4)	5812(5)
z	2	8
$D_{\rm calc}$ (g cm ⁻³)	1.700	1.519
λ (Mo Kα) (Å)	0.71073	0.71073
Absorption coefficient		
(mm ⁻¹)	3.026	1.052
Range (°)	3.0-50	3.0-55
Scan type	$\theta - 2\theta$	$\theta - 2\theta$
Number of reflections		
collected	3738	12163
Number of indepen-		
dent reflections	$3455 (R_{int} = 1.19\%)$	$11000 (R_{int} = 3.17\%)$
Number of observed		
reflections	2313 ($I > 3\sigma(I)$)	$6207 (I > 2\sigma(I))$
Number of N _{params}		
refined parameters	244	739
R ^a for significant		
reflections	0.072	0.050
R_w ^b for significant		
reflections	0.090	0.062
Goodness of Fit ^c	1.25	1.25

66

Table 2 ¹H NMR data of complexes 1–6 and $(HOC_6H_4CH_3)Cr(CO)_3$ in CDCl₃

Complex M	Μ	Х	δ (ppm)				
			$\eta^{5}-C_{5}H_{5}$	η^6 -C ₆ H ₄	CH ₃	CH ₂	C ₆ H ₅
1	Ti	CH ₃	6.06 (s)	4.53 (d)	2.01 (s)		
		-		5.38 (d)	0.83 (s)		
2	Ti	Cl	6.43 (s)	4.90 (d)	2.03 (s)		
				5.42 (d)			
3	Ti	Br	6.48 (s)	4.92 (d)	2.05 (s)		
				5.41 (d)			
4	Ti	$(OC_6H_4CH_3)Cr(CO)_3$	6.36 (s)	4.99 (d)	2.08 (s)		
				5.54 (d)			
5	Zr	$CH_2C_6H_5$	6.07 (s)	4.80 (d)	2.05 (s)	2.39 (s)	6.86 (m)
				5.38 (d)			7.21 (m)
6	Zr	$(OC_6H_4CH_3)Cr(CO)_3$	6.41 (s)	4.94 (d)	2.07 (s)		
				5.47 (d)			
	(HOC ₆ H ₄ CH ₃)Cr(CO) ₃			4.26 (s, 1H)	2.05 (s)		
				5.11 (d, 2H)			
				5.42 (d, 2H)			

 $CH_3)Cr(CO)_3$ to the range between 4.99 and 4.53 ppm. The most dramatic change is found for 1 (M = Ti; X = CH₃) at 4.53 ppm and less so for 5 (M = Zr; X = CH₂C₆H₅) at 4.80 ppm. Geometrically the protons *ortho* to the oxo substituent point towards the Group 4 metal and the ¹H chemical shifts of these protons might be affected by both Ti and Cr metals and also by Cp rings. However, the roles of the alkyl group in 1 and 5 in the dramatic changes in the ¹H

chemical shifts of the *ortho* protons is not clear. Yet, the changes are parallel to the also relatively upfield chemical shifts of the protons of Cp in complexes.

3.2. The molecular structures of 3 and 4

The atomic coordinates and equivalent isotropic displacement coefficients of 3 and 4 are listed in Tables 4 and 5 and the molecular structures are shown in Figs. 1

Table 3 ¹³C NMR data of 1-6 in CDCl₃

Complex	М	X	$X \qquad \delta$ (ppm)					
			co	η^5 -C ₅ H ₅	η^6 -C ₆ H ₄	CH ₃	CH ₂	C ₆ H ₅
1	Ti	CH ₃	235.3	113.7	82.2	19.9		
		0			97.5	40.6		
					99.6			
					151.6			
2	Ti	Cl	235.0	118.5	82.4	19.9		
					96.9			
					100.5			
					152.0			
3	Ti	Br	235.1	118.2	82.2	19.9		
					96.8			
					100.7			
					152.1			
4	Ti	$(OC_6H_4CH_3)Cr(CO)_3$	235.4	117.3	84.1	19.8		
		0450			97.6			
					100.6			
					151.7			
5	Zr	CH ₂ C ₆ H ₅	235.0	112.5	83.7	19.8	52.2	121.3
					96.5			126.7
					101.1			128.1
					145.7			151.7
6	Zr	$(OC_6H_4CH_3)Cr(CO)_3$	235.1	114.3	83.8	19.9		
					97.0			
					101.2			
					146.9			

 $M = Zr, \ \ X = CH_2C_6H_5 \ \ (5) \\ X = (OC_6H_4CH_3)Cr(CO)_3 \ \ (6)$

Table 4

Atomic coordinates and equivalent isotropic displacement coefficients of $\mathbf{3}$

Atom	x	у	z	U_{eq}
				(Å ²)
Ti	0.5831(2)	0.8675(1)	0.2319(1)	0.034(1)
Cr	0.1242(2)	0.4469(1)	0.2478(1)	0.034(1)
Br	0.3911(2)	1.0218(1)	0.3257(1)	0.071(1)
0	0.4328(7)	0.6936(5)	0.2234(4)	0.047(2)
O(18)	0.0390(11)	0.1644(7)	0.0723(6)	0.089(4)
O(19)	-0.2241(10)	0.3487(8)	0.2984(7)	0.086(4)
O(20)	-0.0659(14)	0.5625(8)	0.0994(6)	0.104(5)
C(1)	0.7460(14)	0.8980(13)	0.4042(7)	0.070(5)
C(2)	0.7962(14)	1.0266(12)	0.3940(8)	0.072(5)
C(3)	0.8911(13)	1.0082(10)	0.3128(8)	0.067(5)
C(4)	0.8900(13)	0.8621(11)	0.2745(9)	0.070(5)
C(5)	0.8070(13)	0.7988(11)	0.3330(8)	0.065(5)
C(6)	0.3900(23)	0.8919(28)	0.0882(11)	0.122(11)
C(7)	0.5574(30)	0.9836(15)	0.1131(9)	0.103(8)
C(8)	0.6767(17)	0.9124(19)	0.0903(10)	0.093(7)
C(9)	0.5978(30)	0.7709(17)	0.0568(9)	0.108(9)
C(10)	0.4153(28)	0.7571(21)	0.0517(10)	0.119(8)
C(11)	0.3895(10)	0.6178(7)	0.2795(6)	0.039(3)
C(12)	0.4250(10)	0.4820(7)	0.2590(6)	0.040(3)
C(13)	0.3756(9)	0.3996(8)	0.3173(6)	0.039(3)
C(14)	0.2868(11)	0.4480(8)	0.3985(6)	0.042(3)
C(15)	0.2468(11)	0.5829(7)	0.4165(6)	0.043(3)
C(16)	0.2925(10)	0.6648(8)	0.3576(6)	0.043(3)
C(17)	0.2374(12)	0.3625(9)	0.4635(7)	0.053(4)
C(18)	0.0744(12)	0.2733(9)	0.1386(7)	0.051(4)
C(19)	- 0.0907(11)	0.3874(9)	0.2786(7)	0.050(4)
C(20)	0.0075(13)	0.5166(9)	0.1575(8)	0.059(4)

and 2. The selected bond lengths and bond angles for 3and 4 are listed in Table 6. For 3, the Ti-Cp distances and the Cp-Ti-Cp angle are normal compared with the titanocene complexes [13]. However the Ti-O distance at 1.903 Å is long compared with the Ti-O(alkoxide) and the Ti-O(aryl) distances around 1.85 Å [14]. This distance is even comparable with or just somewhat shorter than the usual Zr-O (alkoxide) and Zr-O (aryl) distances ranged from 1.900 to 2.000 Å [15]. For the complex $Cp_2TiBr[(OCH_2C_6H_5)Cr(CO)_3]$ [5a] in which the phenyl ring and the oxygen donor are mediated by a CH₂ group, the Ti-Br distance at 2.558(1) Å is about the same as the value of 2.550(2) Å in 3. However, the Ti-O distance at 1.822(3) Å in $Cp_2TiBr[(OCH_2C_6H_5)Cr(CO)_3]$ is substantially shorter than the Ti-O distance in 3 by 0.08 Å. The long Ti-O distance suggests a severely close contact between the titanocene and the (arene) $Cr(CO)_3$ moieties. For 4, two independent molecules are found in a unit cell and labeled as structures 4 and 4'. In 4 and 4', the average Ti-Cp distance at 2.082 Å is somewhat longer than the value of 2.053 Å in 3 and the O(1)-Ti-O(2) angles at 98.4(2) and 96.6(2)° are larger than the Br-Ti-O angle in 3 at 94.1(2)°. The Cp-Ti-Cp angles at 131.6 and 131.0° are somewhat smaller than 131.7° in 3, but the differences are not significant. The two Ti-O distances in 4 or 4' are inequivalent with an average of 1.927 Å, which is even longer than the distance in 3 by 0.024 Å. Much more severely steric crowdedness is suggested for **4**.

For (arene)Cr(CO)₃ moieties, several important features are observed. The two phenyl rings in 4 and 4' are tilted in opposite directions from the O(1)-Ti-O(2)plane with angles of 39.5 and 37.5° for 4 and angles of 37.9 and 43.1° for 4'. The angle between two phenyl rings is 75.0° for 4 and 75.3° for 4'. The Cr-carbonyl tripods are on the opposite side from the tilting direction of the phenyl rings and therefore two Cr-carbonyl tripods located in opposite directions. However, in the similar complex $Cp_2Zr[(OC_6H_5)Cr(CO)_3]_2$ [5a], in which there is a larger Zr core and less steric crowdedness among the zirconocene and $(arene)Cr(CO)_3$ moieties, the phenyl rings are tilting in the same direction with both Cr-carbonyl tripods located on the same side. The reason that the two phenyl rings bend away in 4 and 4' is just to avoid the close contact between two inner ortho hydrogen atoms in the $(arene)Cr(CO)_3$ moieties. The distances between two inner hydrogen atoms at 2.540 Å (H(12A)-H(26A) in 4) and 2.203 Å (H(12B)-H(22B) in 4') are about similar to or somewhat shorter than the van der Waals distance of 2.40 Å of two hydrogen atoms [16]. In 3, the phenyl ring also bends away from the O(1)-Ti-Br plane by 34.1°. In comparison with the O–C(aryl) distances at 1.37 ± 0.01 Å in the Ti-OAr complexes [14b,f], the slightly short O-C(aryl) distance at 1.312(11) Å for 3 and at 1.336 Å

Table 5 Atomic coordinates and equivalent isotropic displacement coefficients of **4**

Atom	x	у	z	U_{eq}
				$(Å^2)$
	0.7548(1)	0.6561(1)	0.8872(2)	0.042(1)
Γ	0.7346(1) 0.5620(1)	0.0301(1)	1.0506(1)	0.042(1)
$C_{\tau}(1)$	0.5020(1)	0.3040(1)	1.0300(1) 1.1480(1)	0.045(1)
O(1)	0.6685(5)	0.0992(1)	1.1400(1)	0.040(1)
O(1)	0.0083(3)	0.0131(1)	0.9206(2)	0.007(2)
O(2)	0.7434(3) 0.2200(7)	0.0792(2)	0.9773(2)	0.008(2) 0.110(4)
O(10)	0.2500(7) 0.2622(10)	0.5380(2)	0.9300(3) 1 1275(4)	0.119(4) 0.125(2)
O(19)	0.3023(10) 0.4363(9)	0.0113(2) 0.5121(2)	1.1375(4) 1.1475(2)	0.135(3)
O(20)	0.4302(0) 0.9870(7)	0.5121(2) 0.6505(2)	1.1475(3) 1.1477(4)	0.095(3) 0.114(3)
O(20)	0.9870(7)	0.0393(2) 0.7450(2)	1.1477(4) 1 2467(3)	0.114(3) 0.084(2)
O(23)	0.0395(7) 0.5466(10)	0.7450(2)	1.2407(3) 1 2748(3)	0.004(2) 0.126(3)
C(1)	0.5400(10)	0.0007(2) 0.6841(3)	0.8650(4)	0.120(3) 0.074(3)
C(2)	0.4573(8)	0.6532(2)	0.8050(4) 0.8415(4)	0.074(3)
C(2)	0.4575(0)	0.0332(2) 0.6470(3)	0.0419(4) 0.7840(4)	0.077(4)
C(4)	0.5528(9)	0.6741(3)	0.7697(4)	0.077(4)
C(5)	0.6087(11)	0.6971(3)	0.8206(6)	0.093(4)
C(6)	1.0466(8)	0.6421(2)	0.9329(4)	0.064(3)
C(7)	1.0125(8)	0.6235(2)	0.8733(5)	0.077(3)
C(8)	0.9936(8)	0.6432(2)	0.8131(4)	0.071(3)
C(9)	1.0163(8)	0.6749(2)	0.8355(4)	0.075(3)
C(10)	1.0512(8)	0.6735(2)	0.9117(5)	0.071(3)
C(11)	0.7231(7)	0.5930(2)	0.9687(3)	0.050(2)
C(12)	0.7787(8)	0.6006(2)	1.0403(3)	0.058(2)
C(13)	0.8359(8)	0.5756(2)	1.0892(3)	0.061(3)
C(14)	0.8364(8)	0.5436(2)	1.0695(3)	0.057(2)
C(15)	0.7730(7)	0.5365(2)	0.9970(3)	0.054(2)
C(16)	0.7147(8)	0.5601(2)	0.9496(3)	0.056(2)
C(17)	0.8993(10)	0.5178(2)	1.1200(4)	0.081(3)
C(18)	0.3620(10)	0.5601(2)	0.9940(4)	0.070(3)
C(19)	0.4437(11)	0.5919(2)	1.1055(4)	0.077(3)
C(20)	0.4835(9)	0.5316(2)	1.1091(4)	0.063(3)
C(21)	0.6390(7)	0.6944(2)	1.0220(3)	0.047(2)
C(22)	0.6738(8)	0.7262(2)	1.0425(3)	0.057(2)
C(23)	0.5639(10)	0.7426(2)	1.0905(3)	0.064(3)
C(24)	0.4242(10)	0.7279(3)	1.1208(4)	0.078(4)
C(25)	0.3928(8)	0.6956(2)	1.1024(3)	0.069(3)
C(26)	0.4993(7)	0.6782(2)	1.0535(3)	0.053(2)
C(27)	0.2943(12)	0.7438(3)	1.1690(5)	0.129(6)
C(28)	0.8623(10)	0.6747(2)	1.1465(4)	0.068(3)
C(29)	0.7835(9)	0.7269(2)	1.2093(3)	0.054(2)
C(30)	0.5907(11)	0.6763(2)	1.2259(4)	0.076(3)
Tí'	0.2383(1)	0.5757(1)	0.3808(1)	0.031(1)
Cr(1')	0.0206(1)	0.5613(1)	0.6397(1)	0.038(1)
Cr(2')	0.0545(1)	0.6851(1)	0.4858(1)	0.041(1)
O(1)	0.1479(5)	0.5568(1)	0.4090(2)	0.049(1)
$O(2^{-})$	0.2106(5)	0.0194(1)	0.4093(2) 0.4222(2)	0.040(1)
O(18)	-0.2185(8)	0.0181(2) 0.5260(2)	0.0552(5) 0.5687(2)	0.098(3)
O(19)	-0.2790(7)	0.5209(2) 0.5448(2)	0.5087(3) 0.7824(3)	0.095(3)
O(20)	-0.1311(7)	0.5440(2) 0.6662(2)	0.7624(3)	0.100(3)
O(20')	0.4004(7) 0.1702(10)	0.0002(2) 0.7528(2)	0.3330(3) 0.4776(4)	0.10+(3) 0.126(3)
$O(2^{3})'$	-0.0722(9)	0.7920(2) 0.6977(2)	0.6351(3)	0.126(3)
C(1')	-0.0347(9)	0.5868(2)	0.3137(4)	0.070(3)
C(2')	0.0948(10)	0.5863(3)	0.2650(3)	0.074(3)
C(3')	0.1579(13)	0.5563(3)	0.2624(4)	0.080(4)
C(4')	0.0689(13)	0.5382(2)	0.3143(5)	0.090(4)
C(5')	-0.0519(8)	0.5581(2)	0.3438(3)	0.064(3)
C(6')	0.5235(7)	0.5795(2)	0.4431(3)	0.055(3)
C(7′)	0.4962(8)	0.5476(2)	0.4249(4)	0.063(3)
C(8′)	0.4876(8)	0.5463(2)	0.3479(4)	0.073(3)

Table 5 (continued)				
x	y	Z	$U_{\rm eq}$ (Å ²)	
0.5074(8)	0.5770(2)	0.3205(3)	0.066(3)	
0.5289(7)	0.5973(2)	0.3792(4)	0.057(2)	
0.1965(7)	0.5580(2)	0.5399(3)	0.044(2)	
0.2259(8)	0.5873(2)	0.5771(3)	0.050(2)	
0.2756(7)	0.5878(2)	0.6526(3)	0.051(2)	
0.2930(8)	0.5593(2)	0.6920(3)	0.053(2)	
0.2561(7)	0.5301(2)	0.6565(3)	0.046(2)	
0.2057(7)	0.5297(2)	0.5811(3)	0.047(2)	
0.3526(10)	0.5592(2)	0.7723(3)	0.076(3)	
-0.1233(10)	0.5964(2)	0.6362(3)	0.061(2)	
-0.1628(9)	0.5399(2)	0.5957(3)	0.053(2)	
-0.0723(9)	0.5510(2)	0.7278(3)	0.059(2)	
0.0809(7)	0.6412(2)	0.4115(3)	0.041(2)	
-0.0587(7)	0.6367(2)	0.4594(3)	0.046(2)	
-0.1937(8)	0.6602(2)	0.4598(3)	0.054(2)	
-0.1942(9)	0.6874(2)	0.4157(3)	0.064(3)	
- 0.0492(10)	0.6915(2)	0.3717(3)	0.062(2)	
0.0890(8)	0.6694(2)	0.3701(3)	0.052(2)	
-0.3426(9)	0.7106(2)	0.4135(4)	0.078(3)	
0.2698(9)	0.6739(2)	0.5287(4)	0.062(3)	
0.1271(10)	0.7268(2)	0.4818(4)	0.065(3)	
-0.0236(9)	0.6926(2)	0.5781(4)	0.067(3)	
	continued) x 0.5074(8) 0.5289(7) 0.1965(7) 0.2259(8) 0.2756(7) 0.2930(8) 0.2561(7) 0.2057(7) 0.3526(10) - 0.1233(10) - 0.1628(9) - 0.0723(9) 0.0809(7) - 0.1937(8) - 0.1942(9) - 0.0492(10) 0.0890(8) - 0.3426(9) 0.2698(9) 0.1271(10) - 0.0236(9)	continued) x y $0.5074(8)$ $0.5770(2)$ $0.5289(7)$ $0.5973(2)$ $0.1965(7)$ $0.5580(2)$ $0.2259(8)$ $0.5873(2)$ $0.2756(7)$ $0.5878(2)$ $0.2930(8)$ $0.5593(2)$ $0.2561(7)$ $0.5301(2)$ $0.2057(7)$ $0.5297(2)$ $0.3526(10)$ $0.5592(2)$ $-0.1233(10)$ $0.5964(2)$ $-0.0723(9)$ $0.5510(2)$ $0.0809(7)$ $0.6412(2)$ $-0.0587(7)$ $0.6367(2)$ $-0.1937(8)$ $0.6602(2)$ $-0.1942(9)$ $0.6874(2)$ $-0.3426(9)$ $0.7106(2)$ $0.2698(9)$ $0.6739(2)$ $0.1271(10)$ $0.7268(2)$ $-0.0236(9)$ $0.6926(2)$	continued)xyz $0.5074(8)$ $0.5770(2)$ $0.3205(3)$ $0.5289(7)$ $0.5973(2)$ $0.3792(4)$ $0.1965(7)$ $0.5580(2)$ $0.5399(3)$ $0.2259(8)$ $0.5873(2)$ $0.5771(3)$ $0.2756(7)$ $0.5878(2)$ $0.6526(3)$ $0.2930(8)$ $0.5593(2)$ $0.6920(3)$ $0.2551(7)$ $0.5879(2)$ $0.5811(3)$ $0.3526(10)$ $0.5592(2)$ $0.7723(3)$ $-0.1233(10)$ $0.5964(2)$ $0.6362(3)$ $-0.0723(9)$ $0.5510(2)$ $0.7278(3)$ $0.0809(7)$ $0.6412(2)$ $0.4115(3)$ $-0.0587(7)$ $0.6367(2)$ $0.4594(3)$ $-0.1937(8)$ $0.6602(2)$ $0.4598(3)$ $-0.1942(9)$ $0.6874(2)$ $0.3717(3)$ $0.0890(8)$ $0.6694(2)$ $0.3701(3)$ $-0.3426(9)$ $0.7106(2)$ $0.4135(4)$ $0.2698(9)$ $0.6739(2)$ $0.5287(4)$ $0.1271(10)$ $0.7268(2)$ $0.4818(4)$ $-0.0236(9)$ $0.6926(2)$ $0.5781(4)$	

(average distance) for 4 suggests some π bonding character developed between O and C(aryl) atoms.

The molecular orbital calculation has shown a low rotational barrier between eclipsed conformation I and staggered conformation II with the staggered form favored by 0.3 kcal mol⁻¹. For monosubstituted (arene)Cr(CO)₃ complexes, the conformation would be *syn*-eclipsed conformation III, *anti*-eclipsed conformation III, *anti*-eclipsed conformation V.

Fig. 1. The molecular structure of **3**. Hydrogen atoms are omitted for clarity.

Fig. 2. The molecular structure of 4 (only structure 4 is shown). Hydrogen atoms are omitted for clarity.

Table 6 Selected bond lengths (Å) and bond angles (°) for **3** and **4**

3		4				
			4	4′		
Bond lengths						
Ti–Br	2.550(2)	Ti-O(1)	1.941(6)	1.944(4)		
Ti-O(1)	1.903(6)	Ti-O(2)	1.912(5)	1.910(5)		
Ti-Cp(1)	2.056	Ti-Cp(1)	2.074	2.089		
Ti-Cp(2)	2.049	Ti-Cp(2)	2.087	2.078		
O-C(11)	1.312(11)	O(1)-C(11)	1.329(8)	1.336(6)		
Cr-Ph	1.740	O(2)-C(21)	1.334(7)	1.343(7)		
(Cr-CO) _{av}	1.827	Cr(1)-Ph(1)	1.765	1.759		
(C-O) _{av}	1.150	Cr(2)-Ph(2)	1.755	1.745		
		(Cr(1)–CO) _{av}	1.819	1.828		
		$(Cr(2)-CO)_{av}$	1.825	1.840		
		$(Cr(1)C-O)_{av}$	1.168	1.147		
		$(Cr(2)C-O)_{av}$	1.157	1.146		
Bond angles						
Br-Ti-C(1)	94.1(2)	O(1)-Ti-O(2)	98.4(2)	96.6(2)		
Cp(1)-Ti-Cp(2)	131.7	Cp(1)-Ti-Cp(2)	131.6	131.0		
Ti-O(1)-C(11)	143.4(4)	Ti-O(1)-C(11)	136.0(4)	134.1(4)		
		Ti-O(2)-C(21)	144.2(4)	137.8(4)		

Table 7

 δd values and dihedral angles for 3 and 4 ^a

The syn-eclipsed form III is favored by the electrondonating substituent and the anti-eclipsed conformation IV is favored by the electron-withdrawing substituent. Furthermore the structural non-planarity of the phenyl ring in the (arene)Cr(CO)₃ complexes can be correlated to the donor-acceptor abilities of the ring substituent [4a]. With an electron-donating substituent, the *ipso* carbon is puckered away from the Cr metal center with the δd value positive (VI) and, with an electron-withdrawing substituent, the *ipso* carbon is puckered towards the Cr center with the δd value negative (VII).

In 3 and 4, the oxo substituent is *para* to the methyl group and coordinates to the titanium metal. The δd values for ipso carbon atoms bonded to the two substituents and dihedral angles of the Cr-carbonyl tripods for 3 and 4 are listed in Table 7. Both oxo and CH_3 substituents are electron donating with $\delta d_{C(OTiL_n)}$ ranging from 0.067 to 0.087 Å and $\delta d_{C(CH_3)}$ ranging from -0.013 to 0.043 Å. The oxo substituent is still more electron donating than the para CH₃ substituent even with the oxo group bonded further to the electropositive titanium metal center. Therefore the Crcarbonyl tripods are expected to have the syn-eclipsed conformation relative to the oxo substituent. Indeed, for the larger zirconium complex of $Cp_2Zr[(OC_6H_5) Cr(CO)_{3}]_{2}$, the syn-eclipsed conformation with dihedral angle skewed at 9.4° is observed. However, for 3, the Cr-carbonyl tripod is in staggered form with the

	3	4	4'			$Cp_2Zr[(OC_6H_5)Cr(CO)_3]_2$	
		Ph(1)	Ph(2)	Ph(1')	Ph(2')		
$\delta d_{C(OML_n)}(A)$	0.087	0.075	0.076	0.075	0.067	0.096	
$\delta d_{C(CH_2)}(Å)$	0.004	0.016	0.043	-0.013	0.029	_	
Dihedral angle (°)	24.4	48.3	1.2	40.5	0.4	9.4	
Conformation	Staggered	anti-eclipsed	syn-eclipsed	Staggered	syn-eclipsed	syn-eclipsed	

 $\overline{a} \,\delta d = d_{\mathrm{Cr}-\mathrm{C}_{\mathrm{ipso}}} - d_{\mathrm{Cr}-\mathrm{C}(\mathrm{H})_{\mathrm{av}}}.$

dihedral angle of 24.4°. For 4, one of the Cr-carbonyl tripods adopts nearly the syn-eclipsed conformation with a dihedral angle of 1.2° (structure 4) and 0.4° (structure 4'). However, another Cr-carbonyl tripod is skewed away from the oxo donor with a dihedral angle of 48.3° close to the anti-eclipsed form in 4 and a dihedral angle of 40.5° close to the staggered form in 4'. The skewing away of one Cr-carbonyl tripod from the preferred syn-eclipsed conformation probably arises in order to avoid close contact of two inner carbonyls. The closest distances of the two oxygen atoms of the inner carbonyls are 3.504 Å (019-030' in 4) and 3.502 Å (018–030' in 4') which are longer than the van der Waals distance of 2.80 Å of two oxygen atoms by only 0.7 Å. This study has revealed that the steric effect can become an important factor for the adoption of the conformation of Cr-carbonyl tripods.

Other structural features for $(arene)Cr(CO)_3$ moieties for 3 and 4, such as the Cr-Ph distances, the Cr-CO distances and the CrC-O distances are rather similar for both complexes and are normal compared with other $(arene)Cr(CO)_3$ complexes.

Acknowledgment

Financial support under Grant NSC83-0208-M-005-015 from National Science Council of the Republic of China is appreciated.

References

- (a) A. Solladié-Carallo, *Polyhedron, 4* (1985) 901. (b) E.L. Muetterties, J.R. Bleeke, E.J. Wucherer and T.A. Albright, *Chem. Rev.*, 82 (1982) 499.
- [2] (a) A.D. Hunter, V. Mozol and S.D. Tsai, Organometallics, 11 (1992) 2251; (b) G.M. Bodner and L.D. Todd, Inorg. Chem., 13 (1974) 360.
- [3] (a) F. Rose-Munch, E. Rose and A. Semra, J. Chem. Soc., Chem. Commun., (1986) 1551; (b) E.P. Kündig, Pure Appl. Chem., 57 (1985) 1855; (c) M.F. Semmelhack, J.L. Garcia, D. Cortes, R. Farina, R. Hong, and B.K. Carpenter, Organometallics, 2 (1983) 467; (d) M. Brookhart, W. Lamanna and A.R. Pinhas, Organometallics, 2 (1983) 638; (e) M.F. Sem-

melhack, Pure Appl. Chem., 53 (1981) 2379; (f) D.L. Reger and P.J. McElligott, J. Am. Chem. Soc., 102 (1980) 5924.

- [4] (a) A.D. Hunter, L. Shilliday, W.S. Furey and M.J. Zaworotko, Organometallics, 11 (1992) 1550; (b) T.A. Albright, P. Hofmann and R. Hoffmann, J. Am. Chem. Soc., 99 (1977) 7546.
- [5] (a) J.A. Heppert, T.J. Boyle and F. Takusagawa, Organometallics, 8 (1989) 461; (b) H.-M. Gau, C.-T. Chen, T.-T. Jong and M.-Y. Chien, J. Organomet. Chem., 448 (1993) 99; (c) H.-M. Gau, C.-T. Chen and C.-C. Schei, J. Organomet. Chem., 424 (1992) 307.
- [6] G.J. Erskine, D.A. Wilson and J.D. McCowan, J. Organomet. Chem., 114 (1976) 119.
- [7] H.C. Beachell and S.A. Butter, Inorg. Chem., 4 (1965) 1133.
- [8] G. Fachinetti, G. Fochi and C. Floriani, J. Chem. Soc., Dalton Trans., (1977) 1946.
- [9] (a) H.P. Fritz and C.G. Kreiter, J. Organomet. Chem., 7 (1967) 427; (b) Nicholls and M.C. Whiting, J. Chem. Soc., (1959) 551.
- [10] D.P. Tate, W.R. Knipple and J.M. Augl, *Inorg. Chem.*, 1 (1962) 433.
- [11] (a) D.M. Adams and A. Squire, J. Chem. Soc., Dalton Trans., (1974) 558; (b) D.M. Adams and A. Squire, J. Chem. Soc. A, (1970) 814.
- [12] Y. Dang, H.J. Geise, R. Dommisse, E. Esmans and H.O. Desseyn, J. Organomet. Chem., 381 (1990) 333.
- [13] (a) A. Clearfield, D.K. Warner, C.H. Saldarriaga-Molina, R. Ropal and I. Bernal, *Can. J. Chem.*, 53 (1975) 1622; (b) V.B. Shur, V.V. Burlakov, A.I. Yanovsky, P.V. Petrovsky, Y.T. Struchkov and M.E. Vol'pin, *J. Organomet. Chem.*, 297 (1985) 51; (c) J.S. Merola, K.S. Campo, R.A. Gentile and M.A. Modrick, *Inorg. Chim. Acta*, 165 (1989) 87.
- [14] (a) P. Berno, C. Floriani, A. Chiesi-Villa and C. Guastini, Organometallics, 9 (1990) 1995; (b) U. Thewalt and K. Döppert, J. Organomet. Chem., 320 (1987) 177; (c) L.R. Chamberlain, L.D. Durfee, P.E. Fanwick, L. Kobriger, S.L. Latesky, A.K. McMullen, I.P. Rothwell, K. Folting, J.C. Huffman, W.E. Streib and R. Wong, J. Am. Chem. Soc., 109 (1987) 390; (d) V.B. Shur, V.V. Burlakov, A.I. Yanovsky, P.V. Petrovsky, Y.T. Struchkov and M.E. Vol'pin, J. Organomet. Chem., 297 (1985) 51; (e) J.C. Huffman, K.G. Moloy, J.A. Marsella and K.G. Caulton, J. Am. Chem. Soc., 102 (1980) 3009; (f) J. Besançon, S. Top, J. Tirouflet, Y. Dusausoy, C. Lecomte and J. Protas, J. Organomet. Chem., 127 (1977) 153; (g) C. Lecomte, Y. Dusausoy, J. Protas, J. Tirouflet and A. Dormand, J. Organomet. Chem., 73 (1974) 67.
- [15] (a) D.W. Stephan, Organometallics, 9 (1990) 2718; (b) G. Erker,
 F. Sosna, J.L. Petersen, R. Benn and H. Grondey, Organometallics, 9 (1990) 2462; (c) G. Erker, U. Dorf, R. Lecht,
 M.T. Ashby, M. Aulbach, R. Schlund, C. Krüger and R. Mynott, Organometallics, 8 (1989) 2037; (d) G. Erker, F. Sosna, R.
 Zwettler and C. Krüger, Organometallics, 8 (1989) 450; (e) A.K.
 McMullen, I.P. Rothwell and J.C. Huffman, J. Am. Chem. Soc., 107 (1985) 1072; (f) S.L. Latesky, A.K. McMullen, G.P. Niccolai,
 I.P. Rothwell and J.C. Huffman, Organometallics, 4 (1985) 902.
- [16] J. Emsley, The Elements, Oxford University Press, Oxford, 1989.